Kolmogorov numberings and minimal identification
نویسندگان
چکیده
Identification of programs for computable functions from their graphs by algorithmic devices is a well studied problem in learning theory. Freivalds and Chen consider identification of ‘minimal’ and ‘nearly minimal’ programs for functions from their graphs. To address certain problems in minimal identification for Gödel numberings, Freivalds later considered minimal identification in Kolmogorov Numberings. Kolmogorov numberings are in some sense optimal numberings and have some nice properties. We prove certain separation results for minimal identification in every Kolmogorov numbering. In addition we also compare minimal identification in Gödel numberings versus minimal identification in Kolmogorov numberings.
منابع مشابه
An Infinite Class of Functions Identifiable Using Minimal Programs in all Kolmogorov Numberings
Identification of programs for computable functions from their graphs by algorithmic devices is a well studied problem in learning theory. Freivalds and Chen consider identification of ‘minimal’ and ‘nearly minimal’ programs for functions from their graphs. Freivalds showed that there exists a Gödel numbering in which only finite classes of functions can be identified using minimal programs. To...
متن کاملIndex Sets and Universal Numberings
This paper studies the Turing degrees of various properties defined for universal numberings, that is, for numberings which list all partial-recursive functions. In particular properties relating to the domain of the corresponding functions are investigated like the set DEQ of all pairs of indices of functions with the same domain, the set DMIN of all minimal indices of sets and DMIN∗ of all in...
متن کاملComputability and Numberings
The theory of computable numberings is one of the main parts of the theory of numberings. The papers of H. Rogers [36] and R. Friedberg [21] are the starting points in the systematical investigation of computable numberings. The general notion of a computable numbering was proposed in 1954 by A.N. Kolmogorov and V.A. Uspensky (see [40, p. 398]), and the monograph of Uspensky [41] was the first ...
متن کاملLearning languages and functions by erasing
Learning by erasing means the process of eliminating potential hypotheses from further consideration thereby converging to the least hypothesis never eliminated. This hypothesis must be a solution to the actual learning problem. The capabilities of learning by erasing are investigated in relation to two factors: the choice of the overall hypothesis space itself and what sets of hypotheses must ...
متن کاملA note on partial numberings
The different behaviour of total and partial numberings with respect to the reducibility preorder is investigated. Partial numberings appear quite naturally in computability studies for topological spaces. The degrees of partial numberings form a distributive lattice which in the case of an infinite numbered set is neither complete nor contains a least element. Friedberg numberings are no longe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 188 شماره
صفحات -
تاریخ انتشار 1995